







## Resonant Oscillations of Liquid Marbles

<u>Glen McHale\*</u>, Stephen J. Elliott\*, Michael I. Newton\*, Dale L. Herbertson\* and Kadir Esmer<sup>\$</sup>

\*School of Science & Technology, Nottingham Trent University, UK \*Department of Physics, Kocaeli University, Turkey

> 6<sup>th</sup> International Meeting on Electrowetting UCLA 20<sup>th</sup>-22<sup>nd</sup> August 2008

#### Overview

#### 1. Vibrations of Sessile Droplets

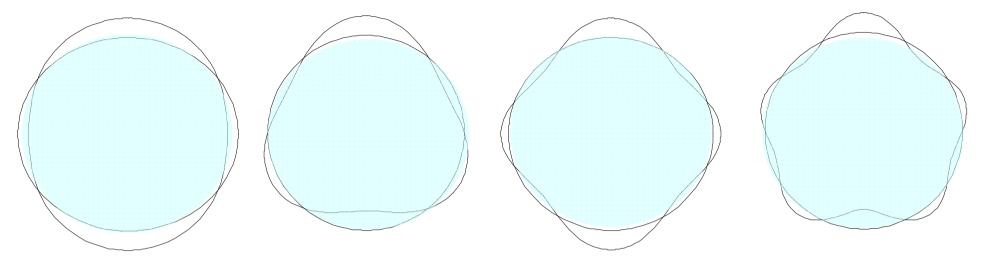
- Spherical and sessile droplets
- Type 1 and Type 2 modes
- Model vibrations
- 2. Liquid Marbles
  - Concept: Perfect non-wetting droplets
  - Mobility: Zero contact angle hysteresis
  - Size dependence: Spherical to puddle
- 3. Oscillation Experiments
  - Experimental set-up
  - Spectra
  - Volume and mode dependence

## Vibration of Sessile Droplets



### Vibrations of Spherical Droplets





*n*=2





*n*=4

*n*=5

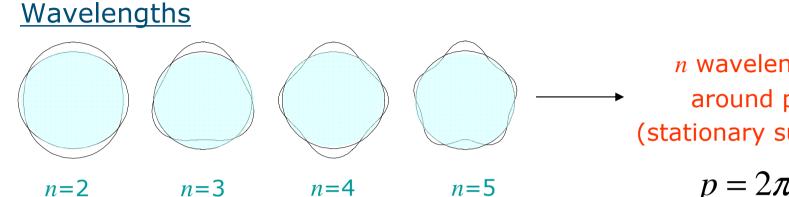
Number of nodes = 2n

#### **Resonant Frequencies**

$$f_n^2 = \frac{n(n-1)(n+2)\gamma_{LV}}{4\rho\pi^2 R^3} \rightarrow \frac{n^3\gamma_{LV}}{3\pi\rho V}$$

4

### **Gravity-Capillary Waves**



*n* wavelengths fitted around perimeter (stationary surface waves)

$$p=2\pi R=n\lambda_n$$

**1-D Dispersion Equation**  $\omega^2 = \left( \frac{\gamma_{LV} q^3}{q} \right)_{\text{tanh}(ab)}$ Bath of depth *h*, wave vector  $q = 2 \pi / \lambda$  $\gamma_{LV}$  is surface tension and  $\rho$  is density  $\omega = 2\pi f$  is angular frequency 2

$$= \left( \begin{array}{c} gq + \frac{1}{\rho} \right) \tanh(qn)$$
gravity finite depth
surface tension
$$u^{3} M = u^{3} M$$

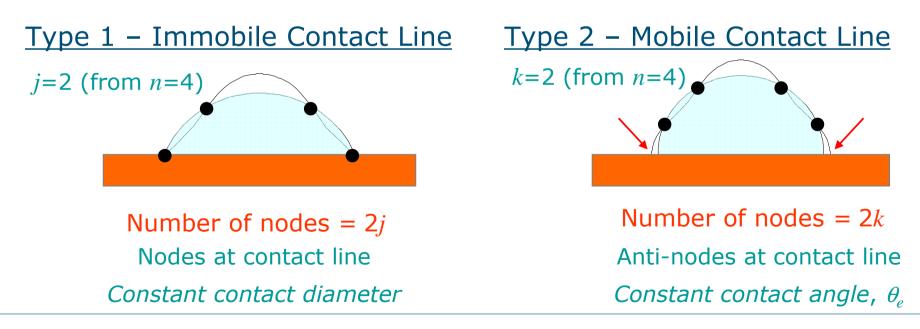
$$\omega_n^2 \approx \frac{\gamma_{LV} q_n^3}{\rho} = \frac{\gamma_{LV} (2\pi)^3}{\rho \lambda_n^3} \xrightarrow{2\pi R = n\lambda_n} f_n^2 \approx \frac{n^3 \gamma_{LV}}{4\rho \pi^2 R^3} = \frac{n^3 \gamma_{LV}}{3\pi \rho V}$$

NTU

### Sessile Droplets

#### Effect of Substrate

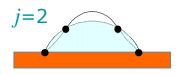
- 1. Breaks complete spherical shape
  - Small droplets are spherical caps
  - Larger droplets flatten and have gravitational effects
    - $\Rightarrow$  Introduces dependence on contact angle,  $\theta$ , and volume, V
- 2. Contact line imposes boundary conditions
  - $\Rightarrow$  Introduces dependence on contact angle hysteresis,  $\Delta \theta$





NTU

## Type 1 – Immobile Contact Line



<u>Pseudo-wavelength</u>

Fit (*j*+1) half-wavelengths around perimeter length, *p*:  $2p = (j+1)\lambda_j$ Perimeter length depends on droplet volume and contact angle,  $p=p(V, \theta_e)$ Substitute into dispersion equation:

$$f_j^2 = \frac{(j+1)g}{4\pi p} \left( 1 + \left(\frac{(j+1)\pi}{p\kappa}\right)^2 \right) \tanh\left(\frac{(j+1)\pi h}{p}\right)$$

where  $\kappa^1 = (\gamma_{LV} / \rho_g)^{1/2}$  is the capillary length

Noblin *et al* suggest mean height of droplet be used for depth,  $h_m = V/\pi R^2$ 

#### **Limits**

Capillary regime: $f \propto (j+1)^{3/2}$ 3/2 power law for modeGravity regime: $f \propto (j+1)$ linear dependence on mode

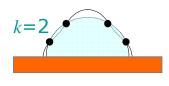


NTU

## Type 2 – Mobile Contact Line

#### Pseudo-wavelength

Fit *k* wavelengths around perimeter length, *p*:



- $p = k\lambda_k$
- Perimeter length depends on droplet volume and contact angle,  $p=p(V, \theta_e)$
- Substitute into dispersion equation:

$$f_k^2 = \frac{kg}{2\pi p} \left( 1 + \left(\frac{2\pi k}{p\kappa}\right)^2 \right) \tanh\left(\frac{2\pi hk}{p}\right)$$

#### <u>Limits</u>

Capillary regime: $f \propto k^2$ 3/2 power law for modeGravity regime: $f \propto k$ linear dependence on mode

#### Mixed modes

- Pure type 2 is difficult to study
- High amplitude excitation and contact angle hysteresis can lead to both contact line motion and contact angle oscillating simultaneously



## Liquid Marbles

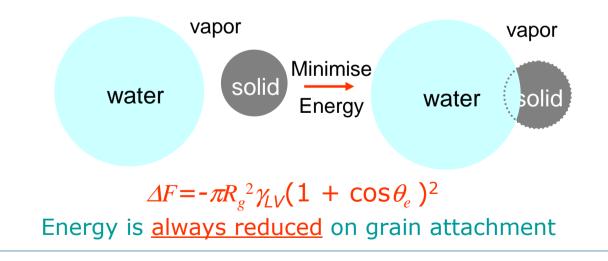


### Experimental Design

#### Requirements

- 1. For approximation to sphere, need very large (>>90°) contact angles
- 2. For type 2 mobile contact lines, need very low contact angle hysteresis
- ⇒ Lithographically fabricated superhydrophobic surface?
   Problem in obtaining mobile contact lines
   Instigation of Cassie-Baxter to Wenzel transition
- OR use <u>liquid marbles</u> on Teflon AF1600/metal coated glass substrate

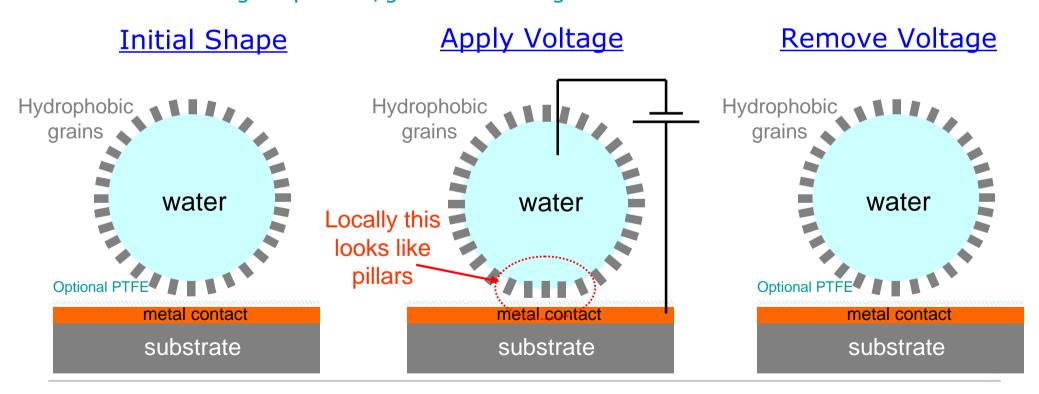
Surface free energy favors hydrophobic grains to attach to liquid-vapor interface





#### Liquid Marbles as Superhydrophobic Surfaces <u>Reversibility Idea</u>

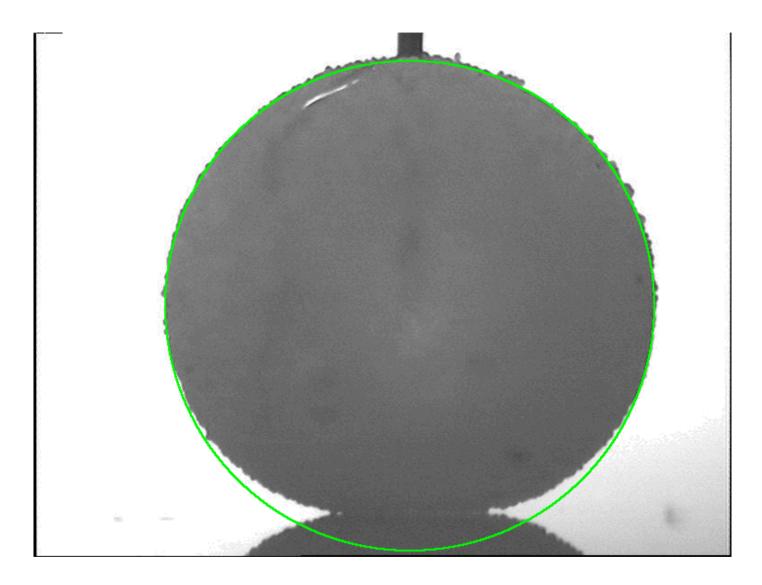
Make the solid "pillars" adhere more to the liquid than the substrate Provides insulating "pillars" <u>conformal</u> to the liquid shape More hydrophobic grains "stick out" further (= to taller pillars) Spin coated Teflon AF1600 on substrate to stop complete breakthrough if powder/granular coating is breached



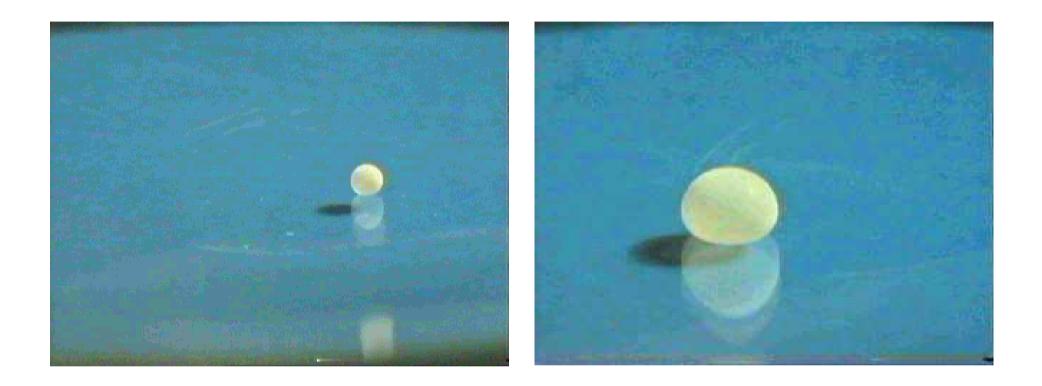
03 September 2009 <u>Reference</u> McHale, G.; *et al.*, Langmuir <u>23</u> (2007) 918-924.



### Reversibility – Low V Cycle

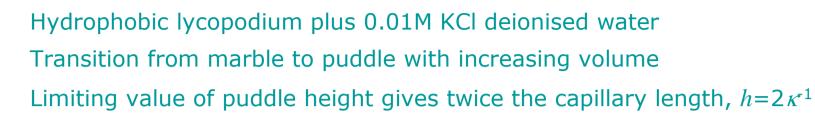


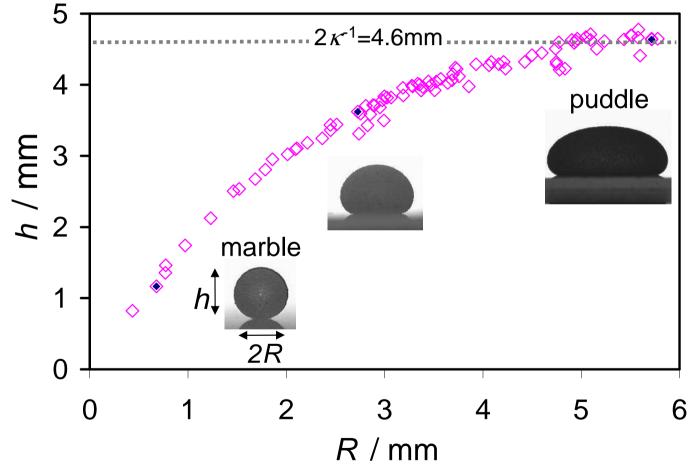
### Mobility of Liquid Marbles



Hydrophobic lycopodium marbles are highly mobile Gravity distorts shape from spherical as volume increases

#### Liquid Marbles – Size Data

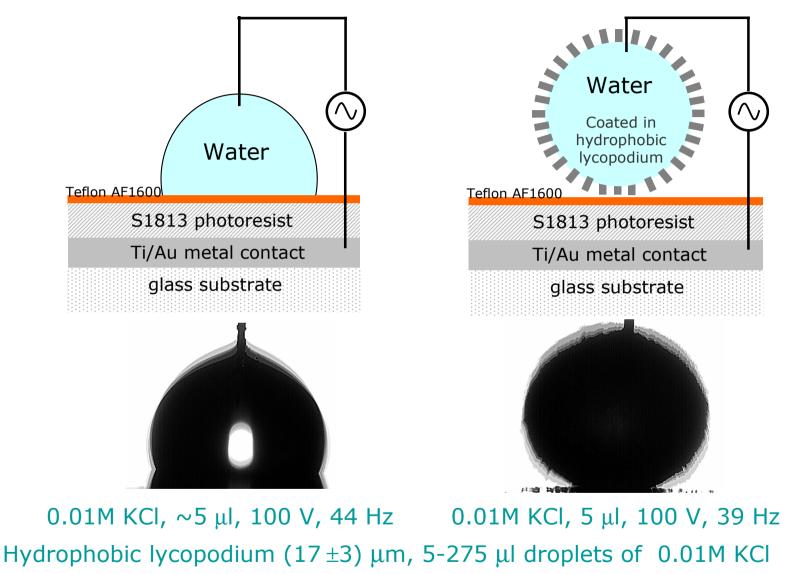




## **Oscillation Experiments**



### **Experimental Arrangements**

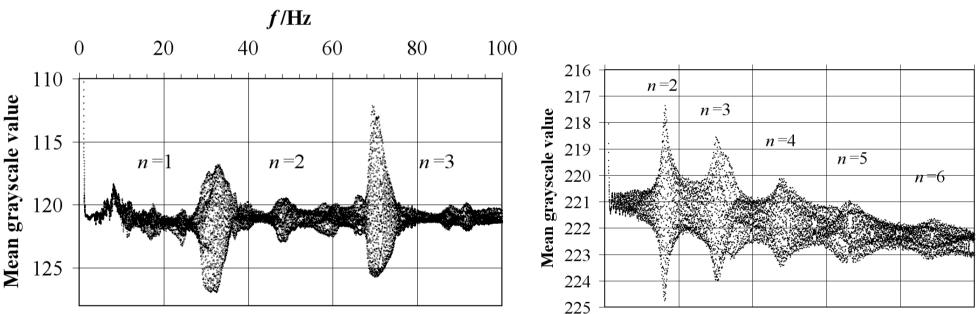


deionised water. Up to 200V p-p, 1 Hz-250 Hz sweep. High speed camera



#### **Example Data**

Example of the z-axis profile data used to locate resonant frequencies (0-100Hz) Mean greyscale value within a rectangular box selection at an anti-node close to the electrode wire for 100  $\mu$ l volumes



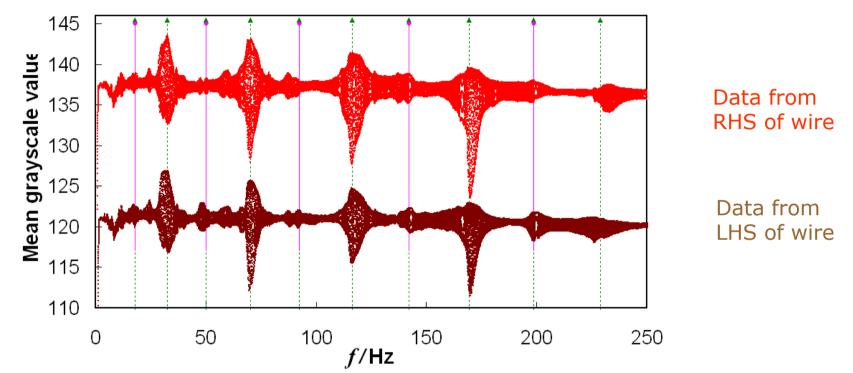
#### **Droplet**

Liquid Marble



#### Analysis of 100 $\mu$ l Sessile Droplet

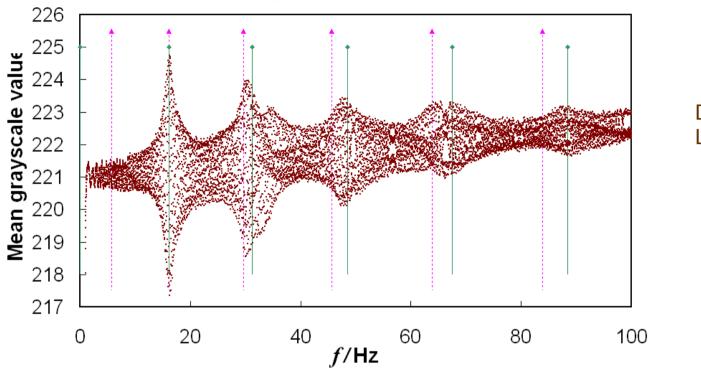
Fits using  $\rho$ =997 kg m<sup>-3</sup>,  $\gamma_{LV}$ =72.8 mN m<sup>-1</sup>. Single fitting parameter used is  $\theta_e$  to reduce perimeter length, p, by 7% (modified from 115° to 87°) to achieve a fit



Immobile contact line case: green (j=1, 2, ..., 10) (capillary only with tanh()=1) Mobile contact line case: pink (k=1, 2, ..., 5) (capillary only with tanh()=1) Major resonances occur for immobile contact line case with mode number j even Resonances with j odd are reduced. These correspond to contact line having either node or anti-node, e.g. immobile j=3 and mobile k=2 both give  $2\lambda$  perimeter length and same f

### Preliminary Analysis of 100 $\mu I$ Liquid Marble

Fits using,  $\gamma_{LV}$ =52 mN m<sup>-1</sup> determined from spherical to puddle data Single fitting parameter used  $\rho$ =1690 kg m<sup>-3</sup> assuming spherical shape



Data from LHS of wire

Mobile contact line case: pink (j=1, 2, ..., 6) (capillary only with tanh()=1) Spherical droplet case: green (n=2, ..., 6)

First major resonances occurs for n=2 and j=2 mode numbers

Spherical case using n(n-1)(n+2) formula appears excellent provided an effective density is used - ratio of surface tension to effective density gives a "spring constant"



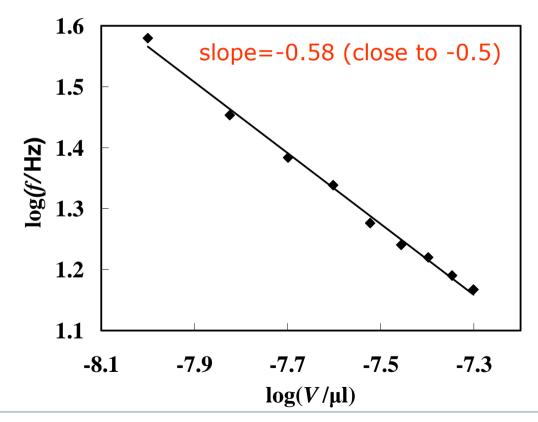
### Volume Dependence (Marble)

Assuming capillary dominated

$$f_k^2 \approx \frac{2\pi k^3 \gamma_{LV}}{p^3 \rho} \tanh\left(\frac{2\pi hk}{p}\right) \propto \frac{k^3}{p^3} \propto \frac{k^3}{V}$$

Square of frequency as a function of reciprocal of marble volume

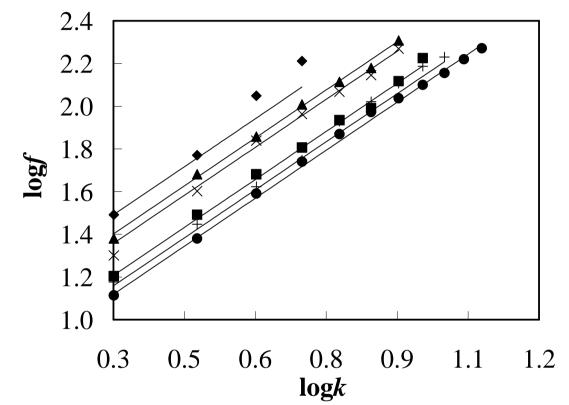
Data for  $k=2 \mod (V=10-50 \mu I)$ 





### Mode Dependence (Marble)

Log-log plot of frequency as a function of mode number for liquid marbles of volumes 10  $\mu$ l ( $\blacklozenge$ ), 30  $\mu$ l ( $\blacktriangle$ ), 50  $\mu$ l (x), 100  $\mu$ l ( $\blacksquare$ ), 125  $\mu$ l (+), 150  $\mu$ l ( $\bullet$ ).



Solid lines are fits using 52 mN m<sup>-1</sup> ( $\rho$ =1690 kg m<sup>-3</sup> for 50, 100, 125 and 150 µl;  $\rho$ =2300 kg m<sup>-3</sup> for 30 µl;  $\rho$ =4560 kg m<sup>-3</sup> for 10 µl (mode misindentification likely for 10 µl) Fitting model: Capillary only with mobile contact line and tanh()=1 Note: Spherical model can be fitted to data using lightly adjusted density values (spring constant)

### Summary

- Shape oscillations can be induced using an EWOD approach
- Droplet's main resonances for immobile contact line and *j* even
- Liquid marbles provide an idealized perfectly non-wetting system
- No need for active levitation/microgravity
- Zero contact angle hysteresis/mobile contact line
- Potential to study capillary-to-gravity regime transition



The End

See Also Our Poster Microfluidic Switchable Diffraction Grating Gary G. Wells, Carl V. Brown, Glen McHale, Michael I. Newton and Christophe L. Trabi





## See Poster - Microfluidic Switchable Diffraction grating

<u>Gary G. Wells</u>, Carl V. Brown, Glen McHale, Michael I. Newton and Christophe L. Trabi

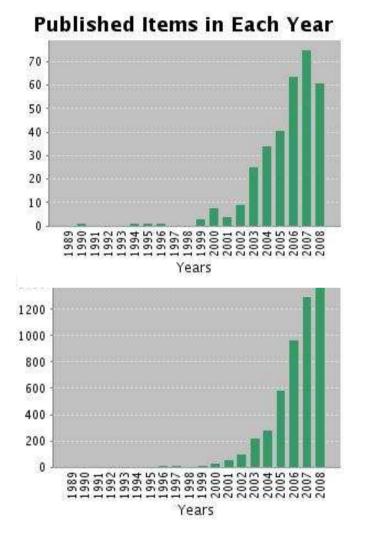
School of Science & Technology, Nottingham Trent University, UK

6<sup>th</sup> International Meeting on Electrowetting UCLA 20<sup>th</sup>-22<sup>nd</sup> August 2008

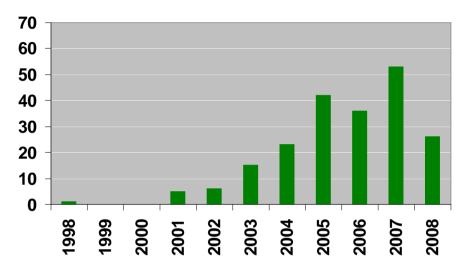


#### Appendices

## "Electrowetting"



#### **ISI Proceedings Papers in Each Year**



03 September 2009

# Fitting Equations



Type 1 – Immobile Contact Line Analysis (k=2,3,4,...)

$$f_j^2 = \frac{(j+1)g}{4\pi p} \left( 1 + \left(\frac{(j+1)\pi}{p\kappa}\right)^2 \right) \tanh\left(\frac{(j+1)\pi h}{p}\right) \approx \frac{\pi (j+1)^3 \gamma_{LV}}{4p^3 \rho}$$

Sessile Droplet (side-view) Perimeter: side – view perimeter =  $2R_{cap}\theta$  $\beta(\theta) = 2 - 3\cos\theta + \cos^3\theta$   $R_{cap} = \left(\frac{3V}{\pi\beta}\right)^{1/3}$ 



Type 2 – Mobile Contact Line Analysis (k=2,3,4,...)

$$f_k^2 = \frac{kg}{2\pi p} \left( 1 + \left(\frac{2\pi k}{p\kappa}\right)^2 \right) \tanh\left(\frac{2\pi hk}{p}\right) \approx \frac{2\pi k^3 \gamma_{LV}}{p^3 \rho}$$

Type 2 – Spherical Droplet Analysis (k=2,3,4, ...)

$$f_n^2 = \frac{n(n-1)(n+2)\gamma_{LV}}{4\rho\pi^2 R^3} = \frac{2\pi n(n-1)(n+2)\gamma_{LV}}{p^3\rho}$$
  
Spherical Droplet (side-view) Perimeter:  $p = 2\pi R = 2\pi \left(\frac{3V}{4\pi}\right)^{1/3}$   
Sessile Droplet (side-view) Perimeter: side – view perimeter =  $2R_{cap}\theta$ 

$$\beta(\theta) = 2 - 3\cos\theta + \cos^3\theta$$

NTU

 $R_{cap} = \left(\frac{\sigma}{\pi\beta}\right)$ 

03 September 2009

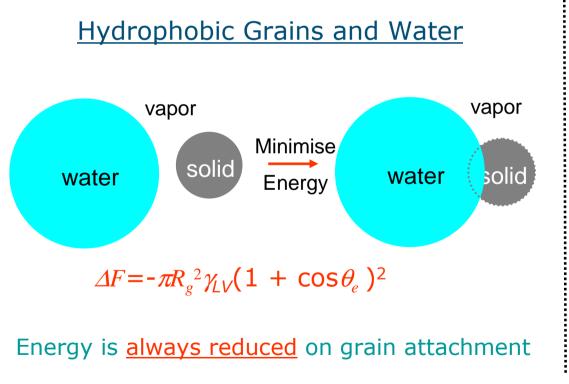
## **Spare Slides**

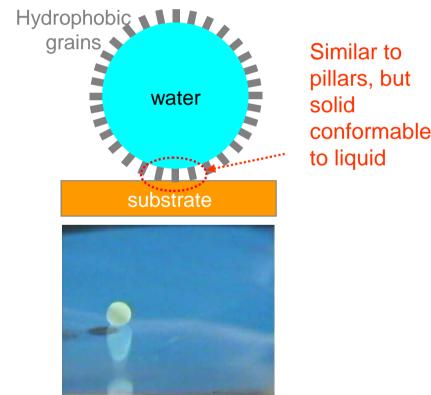


## Liquid Marbles

#### Loose Surfaces

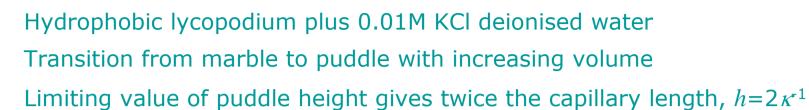
- 1. Grains are not fixed, but can be lifted
- 2. Surface free energy favors solid grains attaching to liquid-vapor interface
- 3. A water droplet rolling on a hydrophobic lycopodium (or other grain/powder) becomes coated and forms a liquid marble

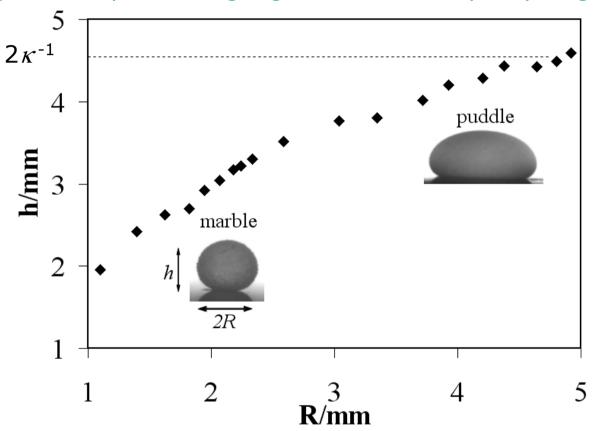




03 September 2009 <u>Reference</u> Aussillous, P.; Quéré, D. Nature <u>411</u> (2001) 924-927.

### Liquid Marbles – Size Data





Inset are images taken for marble of radius 1.1 mm and puddle of radius 4.8 mm.

